NAVSEA STANDARD ITEM

FY-05

ITEM NO: 009-45

DATE: 29 AUG 2003 CATEGORY: II

1. SCOPE:

1.1 Title: Tapered Plug Valve; repair

- 2. REFERENCES:
 - 2.1 None.
- 3. REQUIREMENTS:
 - 3.1 Matchmark valve parts.
- (V) "INSPECT PARTS FOR DEFECTS"
- 3.2 Disassemble, clean internal and external surfaces free of foreign matter (including paint), and inspect parts for defects.
 - 3.3 Repair valve as follows:
- 3.3.1 Machine, grind, or lap and spot-in plug to bore to obtain an 80 percent minimum surface contact, evenly distributed over 100 percent of the area.
- (V) "INSPECT CONTACT"
 - 3.3.1.1 Inspect contact using blueing method.
- 3.3.1.2 Vertical misalignment of ports in the plug valve and body with the plug fully seated shall not be of a degree that will restrict flow.
 - 3.3.2 Chase and tap exposed threaded areas.
 - 3.3.3 Dress and true gasket mating surfaces.
- 3.4 Assemble valve installing new packing and gaskets in accordance with the manufacturer's specifications, and new fasteners in accordance with Table One, or Table 2 for DDG-51 class.

- 3.4.1 Lubricate each MIL-V-24509 valve with grease conforming to SAE-AMS-G-6032.
 - 3.5 Hydrostatically test valve as follows:
- 3.5.1 Hydrostatic test equipment shall have the following capabilities:
 - 3.5.1.1 Manual overpressure protection release valve.
- 3.5.1.2 Self-actuated and resetting relief valve with a set point no greater than 100 PSIG above the test pressure or 10 percent above the test pressure, whichever is less.
- $3.5.1.3\,$ Master and backup test gages with gage range and graduation shown on Table 3.
- 3.5.1.4 Protection equipment shall be accessible and test gages shall be located where clearly visible and readable to pump operator and inspector.

(V)(G) "SEAT TIGHTNESS"

- 3.5.2 Test for seat tightness with valve in closed position with opposite side open for inspection.
 - 3.5.2.1 Plug shall be seated by hand force.
- 3.5.2.2 Test shall be continued for a minimum of three minutes if there is no evidence of leakage or, in the event of visible leakage, until accurate determination of leakage can be made.
- 3.5.2.3 Maximum allowable leakage for a metal-to-metal seated valve: 10 cubic centimeters (cc) per hour, per inch of nominal pipe size. Valve sizes one inch or less may be 10 cc maximum per hour.
 - 3.5.2.4 Allowable leakage for soft seated plug: None.

(V)(G) "SEAT TIGHTNESS"

3.5.3 Test plug valve of duplex strainer to each strainer chamber with unpressurized side top cover removed (two tests per strainer). Allowable leakage: With the drain valve closed the non-pressurized side shall not fill within one hour.

4. NOTES:

- 4.1 Test pressures of 3.5.2 and 3.5.3 will be specified in Work Item.
- 4.2 Repair of valve operating gear will be specified in Work Item.

TABLE ONE

VALVE BODY MATERIAL

	$\frac{1}{2}$ Alloy Steel	Carbon Steel	$\frac{2}{\text{Nonferrous}}$
Studs and Bolts to MIL-DTL-1222	Grade B-16	Grade B-16	Phosphor Bronze - Any Grade Silicon Bronze - Any Grade Nickel Copper - Class A 4/
Nuts to MIL-DTL-1222	Grade 4 or 7	Grade 4 or 7	Phosphor Bronze - Any Grade Silicon Bronze - Any Grade Nickel Copper - Class A or Class B <u>5</u> /
Socket Head Cap Screws	FF-S-86	FF-S-86	

- 1/ Alloy steel is of Composition A 2-1/4 percent Chromium, one percent Molybdenum, Composition B 1-1/4 percent Chromium, 1/2 percent Molybdenum, and Composition C Carbon Molybdenum.
- 2/ Nonferrous Alloy except Aluminum.
- 3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud and, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 250 degrees Fahrenheit. The thread locking compound shall conform to MIL-S-22473. Check Class 3 fit stud ends in accordance with SAE-J2270.
- $\underline{\underline{4}}/$ Fasteners of Nickel Copper Aluminum shall be the only type used on sea chest and hull valves.
- 5/ Nuts of Nickel Copper Alloy, conforming to QQ-N-281 Class A or B, or Nickel Copper Aluminum conforming to QQ-N-286 shall be the only type used on sea chest and hull valves.

TABLE 2

VALVE BODY MATERIAL

		1
	1/ Alloy Steel/Carbon Steel	2/ Nonferrous
3/ Studs and Bolts to MIL-DTL-1222	5/ For services up to and including 650 degrees Fahrenheit; Grade 5 steel	4/ 5/ Phosphor Bronze - Any Grade Silicon Bronze - Any Grade Nickel Copper - Class A
	For services to 775 degrees Fahrenheit; Grade B-7 or B-16	
	For services to 1,000 degrees Fahrenheit; Grade B-16	
	For services in which JP-5 lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature, which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 2, 5 or 8 steel	
	Bolting subject to sea water corrosion (other than hull integrity bolting; for hull integrity bolting see Note 4) Connections in contact with bilge regions. Where strength requires ferrous bolting and is exposed to the weather; Class A Nickel - Copper alloy to QQ-N-281 or silicon bronze to ASTM B98 with dimensions of MIL-DTL-1222. Where greater strength is required, use Nickel - Copper - Aluminum alloy QQ-N-286.	
Nuts to MIL-DTL- 1222	5/ For services up to and including 650 degrees Fahrenheit; Grade 5 steel	Phosphor Bronze - Any Grade Silicon Bronze - Any Grade Nickel Copper - Class A or Class B
	For service to 775 degrees Fahrenheit; Grade 2H or 4 steel	
	For services to 1,000 degrees Fahrenheit; Grade 4 steel	

TABLE 2 (CON'T)

TABLE 2 (CON-1)				
	1/ Alloy Steel/Carbon Steel	2/ Nonferrous		
	For services in which JP-5, lubricating oil, or inflammable gas or liquid of any kind, regardless of pressure and temperature which are within 3 feet of hot surfaces (above 650 degrees F) and where steel tubing is required; Grade 5 or 8 steel			
	Nuts subject to seawater corrosion. Connections in the bilge regions. Where strength requires ferrous material and is exposed to the weather; Class A or B Nickel Copper Alloy to QQ-N-281 or Silicon Bronze to ASTM B98 with dimensions to MIL-DTL-1222			

NOTES

- 1/ Alloy steel is of Composition A 2-1/4 percent Chromium, one percent
 Molybdenum, Composition B 1-1/4 percent Chromium, 1/2 percent
 Molybdenum, and Composition C Carbon Molybdenum.
- 2/ Nonferrous Alloy except Aluminum.
- 3/ Studs shall be Class 2 or 3 fit on the nut end and Class 5 fit on the stud end, except that a Class 3 fit with a thread locking compound may be used where temperatures do not exceed 200 degrees Fahrenheit. The thread locking compound shall conform to MIL-S-22473. Check Class 3 fit stud ends in accordance with SAE-J2270.
- $4/\,\,$ Fasteners of $\textbf{\textit{N}} \text{ickel } \textbf{\textit{C}} \text{opper } \textbf{\textit{Aluminum}} \text{ shall be the only type used on sea chest and hull valves.}$
- 5/ Where these materials would constitute part of a galvanic couple, proposals for alternate materials shall be submitted for approval.

TABLE 3 - MASTER GAGE SELECTION FOR HYDROSTATIC TESTS

Maximum Test Pressure (lb/in²g)		Master Gage Range (lb/in ² g)***		Master Gage Maximum Graduation Size (lb/in²g)
From*	To**	From	То	
5000	9500	0	10000	100
3000 2500	5800 4800	0 0	6000 5000	30 30
1500	2800	0	3000	20
1000 750	1800 1300	0	2000 1500	15 10
500	800	0	1000	10
250 150	500 250	0	600 300	5 2
100	175	0	200	2
75	125	0	160	1
50 20	80 50	0	100 60	1 0.5
10	25	0	30	0.3
7	10	0	15	0.1
5	7	0	10	0.1

NOTES:

- 1. Master gage and back-up gages shall track within two percent of each other.
- 2. System maximum test pressures shall be determined by applicable overhaul specification, building specification, or other governing documents.
- * Values agree with the requirement that gage range shall not exceed 200 percent of maximum test pressure except for gage ranges 0 to 60 and below.
- ** Values allow for reading pressures up to relief valve setting.
- *** Exceptions to the values given in this table may be approved locally by Design, based on an evaluation of test pressure, gage range, and specific application.